Midterm 1

COMP – 520, Spring 2024

Please fill in today's date (YYYY-MM-DD)

Write your name and PID here:

Write your ALIAS here:

Your alias and PID should be written on ALL exam pages.

Your alias represents you and will be equivalent to your name throughout the exam.

Instructions

- 1. Open notes. (Anything you wrote down)
- 2. Open course website. (Including lectures)
- 3. Limited IDE access. (IntelliJ, Eclipse, notepad, etc.)
 - a. IDE access is given so that you can reliably see the syntax highlighting of your code, and that's it!
 - b. You may open your IDE but not write any new code.
 - c. You may NOT compile any code. (javac)
 - d. You may NOT run anything in your IDE.
- 4. No websites other than the course website.
 - a. No Piazza, Canvas, Sakai, email, etc.
- 5. No phones at all, even if you forgot your laptop.
- 6. No collaboration. No communication with others, other than instructors, TAs, and proctors.
- 7. Be concise in your answers.
- 8. You get about the full class period (70 minutes).
- 9. Sign below with either your name or alias.

I pledge I have not given nor received unauthorized aid on this exam:

Alias	 PID	

Notation:

 $Followers(A) \equiv FL(A)$

 $Starters(A) \equiv ST(A)$

 $Nullable(A) \equiv N(A)$

Capitals are non-terminals, lowercase are terminals.

Greek letters are sequences.

Nullable Induction:

Observed	Rule
1. $\alpha = \varepsilon$	Nullable(α) = true
$2. \alpha = t$	Nullable(α) = false
3. $\alpha = A$	$Nullable(\alpha) = Nullable(A)$
$4. \alpha = \alpha_1 \alpha_2 \dots \alpha_n$	$Nullable(\alpha) = Nullable(\alpha_1) \land \land Nullable(\alpha_n)$
5. $\alpha = \alpha_1 \alpha_2 \dots \alpha_n $	$\text{Nullable}(\alpha) = \text{Nullable}(\alpha_1) \lor \lor \text{Nullable}(\alpha_n)$
6. $\alpha = \beta^*$	Nullable(α) = true

Starters Induction:

Observed	Rule
1. $\alpha = \varepsilon$	$Starters(\alpha) = \{ \varepsilon \}$
m2. $\alpha = t$	$Starters(\alpha) = \{ t \}$
3. $\alpha = A$	Starters(α) = Starters(A)
$4. \alpha = \alpha_1 \alpha_2 \dots \alpha_n$	Starters(α) = Starters(α_1) \oplus Starters($\alpha_2 \dots \alpha_n$)
5. $\alpha = \alpha_1 \alpha_2 \dots \alpha_n $	$Starters(\alpha) = Starters(\alpha_1) \cup \cup Starters(\alpha_n)$
6. $\alpha = \beta^*$	$Starters(\alpha) = Starters(\beta) \cup \{ \varepsilon \}$

$$A \oplus B = \begin{cases} A & \text{if } \epsilon \notin A \\ (A \setminus \{\epsilon\}) \cup B & \text{otherwise} \end{cases}$$

Followers first step:

$$FL_0(A) = \left(\bigcup_{C ::= \alpha A \beta} ST(\beta)\right) \setminus \{\varepsilon\}$$

Followers inductive step:

$$FL_{i+1}(A) = FL_i(A) \cup \bigcup_{C ::= \alpha A \beta \text{ and Nullable}(\beta)} FL_i(C)$$

Followers final step:

$$\mathrm{FL}(\mathsf{A}) = \mathrm{FL}_n(\mathsf{A}) \cup \begin{cases} \{\varepsilon\} & \text{if } \mathsf{S} \Rightarrow^* \alpha \mathsf{A} \\ \{\} & \text{otherwise} \end{cases}$$